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Space Flight Avionics 

and Microcomputer Processor History
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Space Flight Avionics 

Radiation Hardened Processors in Space 

Galileo CDS – ATAC-16, 6 parallel 

RCA processors, attitude and 

pointing knowledge, bit stream 

telemetry 

Voyager – 1st

general purpose 

onboard computer, 

fixed clock 

sequencers, no 

state awareness

Cassini (1750A) – 16bit onboard computer at 100KIPS. 7 

individual computers, one for each subsystem, common 

programming language, s/c knew attitude and location in 

space, dynamic packet telemetry

Mars Pathfinder (RAD6000) – Board level 

architecture, 20MIPS of RISC processor with 

IEEE Floating point, first stacked memory, event 

driven telemetry, COTS OS (VxWorks), highly 

complex system requiring system integration.

MSL (RAD750 III) – more processing power 

leads to more complexity, moving towards 

limited autonomy and onboard science 

processing, filling up capacity quickly, leading 

to insufficient memory and I/O.



Human Spaceflight     

(HEOMD) Use Cases
1. Cloud Services

2. Advanced Vehicle Health 
Management

3. Crew Knowledge Augmentation 
Systems

4. Improved Displays and Controls

5. Augmented Reality for Recognition 
and Cataloging

6. Tele-Presence

7. Autonomous & Tele-Robotic 
Construction

8. Automated Guidance, Navigation, 
and Control (GNC)

9. Human Movement Assist

Science Mission                

(SMD) Use Cases

1. Extreme Terrain Landing*

2. Proximity Operations / Formation 
Flying*

3. Fast Traverse

4. New Surface Mobility Methods

5. Imaging Spectrometers*

6. Radar*

7. Low Latency Products for Disaster 
Response

8. Space Weather

9. Science Event Detection and 
Response*

10. Immersive Environments for 
Science Ops / Outreach

High value and mission critical applications 

identified by NASA scientists and engineers 
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LRO 1m Mosaic of Shackleton Rim
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Proximity Operations

• Philae lander

• Concept mission Comet Hitchhiker



Autonomous Science Detection

Using new kinds of rovers (aquatic, 

aerial) to explore new environments 

and terrain.

Ability to autonomously and 

opportunistically observe phenomena 

of science interest.



Computation 

Category

Mission Need Objective of 

Computation

Flight 

Architecture 

Attribute

Processor Type and 

Requirements

Vision-based 

Algorithms 

with Real-Time 

Requirements

• Terrain Relative 

Navigation (TRN)

• Hazard 

Avoidance

• Entry, Descent & 

Landing (EDL) 

• Pinpoint Landing

• Conduct safe proximity 

operations around 

primitive bodies

• Land safely and 

accurately

• Achieve robust results 

within available 

timeframe as input to 

control decisions

• Severe fault 

tolerance and real-

time requirements

• Fail-operational

• High peak power 

needs

• Hard real time / mission critical

• Continuous digital signal 

processing (DSP) + sequential 

control processing (fault 

protection)

• High I/O rate

• Irregular memory use

• General-purpose (GP) 

processor (10’s – 100’s GFLOPS) 

+ high I/O rate, augmented by 

co-processor(s)

Model-Based 

Reasoning 

Techniques for 

Autonomy

• Mission planning, 

scheduling & 

resource 

management 

• Fault 

management in 

uncertain 

environments

• Contingency planning 

to mitigate execution 

failures

• Detect, diagnose and 

recover from faults

• High computational 

complexity

• Graceful 

degradation

• Memory usage (data 

movement) impacts 

energy management

• Soft real time / critical

• Heuristic search, data base 

operations, Bayesian inference

• Extreme intensive & irregular 

memory use (multi-GB/s)

• > 1GOPS GP processor arrays 

with low latency interconnect

High Rate 

Instrument 

Data 

Processing

High resolution 

sensors, e.g., 

SAR, Hyper-

spectral

• Downlink images and 

products rather than raw 

data 

• Opportunistic science

• Distributed, 

dedicated processors 

at sensors

• Less stringent fault 

tolerance

• Soft real time

• DSP/Vector processing with 10-

100’s GOPS (high data flow)

• GP array (10-100’s GFLOPS) 

required for feature ID / triage
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HPC and Autonomy for Robotic Science 

and Exploration

• Hierarchy of autonomy

• First take care of yourself (state awareness, fault handling)

• Next perform defined mission (mission planning and execution 

under changing conditions)

• Third determine what to do in order to perform extended exploration 

and science, i.e., beyond explicitly specified  (goal driven mission  

planning, opportunistic science) with available resources (system 

capability knowledge) in the changing environment (situational 

awareness)

• Fourth cooperate with other robots (constellation, team, swarm 

operations)

• Perform science data processing onboard, send back new 

knowledge (autonomous science)



Mission Visions - Robotics

Press this to shut down 

the instruments, and 

enter safe mode. 

Health Management

Mission planning and 

execution under changing 

circumstances

Goal driven behavior

Spacecraft swarms

Onboard image 

processing



HPC and Autonomy for Crewed Missions

• Take care of vehicle and crew

• Astronaut Assist

• System health monitoring and diagnostics

• Fault Handling

• Maintenance and Repair

• Make it seem like they’re at home

• Virtual reality

• Internet in space and delay tolerant communication

• Augmented Reality

• Visualizations of missions, remote crew & robotics operations

• Work independently for the human crew with minimal direction 

• Repairs, building habitats, or remote stations…

• Teleoperation and virtual presence 

• Work with the crew in a mixed team, understanding what to do 

with minimal direction and with maximal safely of humans

• Medical lab, surgeries



Visions: Crewed missions

Autonomous repair Virtual Reality, Augmented 

Reality 

Work independently with minimal 

direction

Interact with humans on a 

task



What will we need  to Achieve These Capabilities?

• Tens to Hundreds of  GOPS of throughput

• Specialized custom co-processors in a 

• Heterogeneous Computing  Environment

• Extremely high reliability 

• Hardware

• Software

• System operation

• Ability to withstand faults and damage without compromising 

delivered service

• Ability to gracefully and intelligently degrade in performance 

while maintaining safety and high priority services

• Tens to  Hundreds of Gb/s I/O data rates

• Tens to Hundreds of GB/s memory data rates

• Tens of TB of memory capacity

• At extremely low SWaP-C



Multicore Rad Hard Processors

Performance:Power
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Current Multicore Processors

• Leon 4 & variants, RAD 5545  “System on a Chip” Architectures

• Self contained

• Complete system, but limited extensibility

• 4 processing cores + I/O + memory interface

• Limited power management

• Limited fault tolerance strategies

• Limited resource utilization strategies

• Binding of “subsystem” to processing core

• CDH, GnC, Comm, Instrument  processing & control

• Classical SMP

• Allocation of processor core to next task or thread

• Other strategies, e.g. AMP, possible, but limited benefit vs complexity

• Bottlenecks can be a significant issue depending on application

• Especially memory  

• Straightforward programming with standard OS, compilers, 

debuggers



HPSC Reference Architecture
8-Core Extensible Chiplet

• A53 clusters for high bandwidth processing 
provide ~15 GOPS 

• Typical device power is ~5-7 Watts (depending 
on memory and I/O utilization)

• On chip AMBA interconnect, 

• 2 72-bit DDR3/4 memory interfaces

• 6 Serial RapidIO (SRIO) busses (10Gbaud each) 
to interconnect other chiplets, and high 
bandwidth instruments and subsystems

• 6 XAUI port (10Gbaud each)

• Misc I/O: NVM, SRAM, GPIO, Boot ROM

• Power Management – unused cores can be 
dynamically de-powered or put to sleep

• Multiple levels of fault tolerance – hardware and 
software implemented – some mandatory, some 
optional 

16



The Chiplet Concept

• System in  Package (SIP) vs System  on a Chip

• Build complex systems from small, reusable modules, aka Chiplets

• Flexibility/Scalability

• Multiple Chiplets in arbitrary topology

• Mix & match Chiplet technologies/generations

• Multiple modes/levels of fault tolerance, power, dynamically manageable

• Single Chip, 2.5D, 3D packaging (& chiplet configurations)

• Extensibility

• Coprocessors: PIM, Neuromorphic, Robotic, DSP via SRIO

• FPGA via  XAUI/SRIO

• Evolvability

• Low cost, rapid evolution of:

• Chiplets

• Chiplet-based SIP Computers

• Affordability

• Low cost, rapid development

• Chiplet

• Processor/computer package/board



The Chiplet Concept

• But at the cost of complexity

• Software needs to handle

• Multiple widely varying hardware configurations and capabilities

• Parallel processing (not just multithreading)

• Dynamically varying hardware resources

• Dynamically varying software loads with different optimization  

strategies 

• Software development challenge

• Rapid (10M LOC in 2-3 years)

• Highly reliable

• 100% V&V coverage

• Spacecraft System Level

• Distributed computing as well as centralized

• Fault tolerance

• Code migration



HPSC Ecological Elements

The overall High Performance Spaceflight Computing (HPSC) architecture is an “ecology” formed 

by the processor and supporting hardware and software elements to make a modern, scalable, rad 

hard computing environment.
19
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Challenges

• Hardware:

• Cost!

• Heterogeneous configurations – tailored to application

• Keep up with COTS capabilities and tools

• Robustness, life time, radiation hardness…. in a shrinking 

geometry

• Can we build a rapidly evolving, easy to use, plugnplay tool kit?

• Software:

• 10s of Millions of LOC in 2-3 years guaranteed correct and 

dynamically V&V’d with 100% coverage

• Easy to use development system

• Highly complex parallel codes for science and autonomy

• At an affordable price! 

Do we want to show a conceptual architecture – I think so??



Final Thoughts
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